Основы дискретной математики
Санкт-Петербург, осень 2015
Описание
Целью курса является знакомство слушателей с основными понятиями и методами дискретной математики.
Преподаватели
Список лекций
Основные комбинаторные величины и простейшие комбинаторные формулы. Числа размещения и сочетания (с повторениями и без повторений). Бином Ньютона и биномиальные коэффициенты. Простейшие соотношения на биномиальные коэффициенты. Треугольник Паскаля. Обобщение бинома Ньютона и мультиномиальные коэффициенты. Семейства подмножеств конечного множества.
Четность перестановки, разложение в произведение транспозиций, разбиение на циклы, четность цикла, классы сопряженных и циклический тип перестановки.
Задачи о разбиениях чисел на слагаемые. Упорядоченные и неупорядоченные разбиения. Диаграммы Юнга. Рекуррентные соотношения для функций разбиения. Теоремы Харди- Рамануджана (б/д).
Рекуррентные соотношения. Числа Каталана и числа Белла. Различные интерпретации чисел Каталана.
Использование линейной алгебры для доказательства комбинаторных результатов. Различные примеры использования этого метода (неравенство Фишера, (n,k)-плотные множества, множества с двумя расстояниями и т.д.)
Графы и орграфы. Основные определения. Матрицы смежности и инцидентности. Маршруты, пути и циклы. Связность, компоненты связности. Деревья и их свойства. Двусвязные графы и блоки. Дерево блоков и точек сочленения.
Связность орграфов: различные виды связности, компоненты сильной связности, граф компонент. Турнирные графы. Гамильтоновы пути в турнирном графе. Теорема Редеи (б/д). Циклы в сильно связных турнирах. Теорема Муна.
Двудольные графы, критерий двудольности. Вершинные и реберные раскраски графа. Простейшие свойства раскрасок. Теорема Брукса. Теоремы Визинга и Гупты (б/д). Совершенные графы. Слабая и сильная гипотезы Бержа: доказательство слабой гипотезы.
Независимые множества и покрытия. Связь между ними. Паросочетания в двудольном графе: теоремы Холла и Кенига. Вывод теоремы Дилуорса из теоремы Кенига.