Теория игр

Санкт-Петербург, весна 2017

Описание

Теория игр занимается математическим моделированием конфликтных ситуаций, таких как конкуренция в экономике, политические конфликты, проблемы, связанные с голосованием и т.д. Строя математические модели этих явлений, можно предсказывать, каким будет результат конфликта, или находить решение, применимое для многих ситуаций.

В рамках курса мы попробуем получить ответы на следующие вопросы:

  • Какой результат может быть достигнут при взаимодействии агентов, каждый из которых действует рационально и стремится к своей цели (эта ситуация моделируется некооперативной игрой)?
  • Что изменится, если такая ситуация повторяется много раз (динамические игры)? В повторяющихся играх игроки могут использовать информацию не только о текущей ситуации, но и о том, как вели себя другие в прошлом и к чему это приводило.
  • Какие «правила игры» надо установить, чтобы результат этой игры был оптимальным в каком-то смысле (mechanism design)?
  • Какие существуют принципы оптимальности, формализующие идеи справедливости? Как можно «честно» разделить прибыль, учитывая требования групп участников (кооперативные игры)?

Рекомендуемая литература:

  1. Maschler M., Solan E., Zamir S. Game Theory. Translated from the Hebrew by Ziv Hellman and edited by Mike Borns, 2013
  2. Воробьев Н.Н. Теория игр для экономистов-кибернетиков, М. Наука, 1985
  3. Оуэн Г. Теория игр, М. Мир, 1971
  4. Мулен Э. Теория игр. С примерами из математической экономики, М. Мир, 1985
  5. Myerson R. Game Theory. Analysis of Con?ict. Harvard Univ. Press, 1991
  6. Мулен Э. Кооперативное принятие решений: аксиомы и модели, М. Мир, 1991
  7. Печерский С.Л., Яновская Е.Б. Кооперативные игры: решения и аксиомы, Европейский Университет в Санкт-Петербурге, 2004
  8. Peleg B.,Sudh?olter P. Introduction to the theory of cooperative games, Kluwer Acad.Publiushers, 2003

Преподаватели

Список лекций

Введение, краткий рассказ про теорию игр

На вводной лекции постараюсь кратко рассказать о предмете и о том, что будет в курсе. Хочется наметить общий план, чтобы тем, кто будет потом ходить, было легче ориентироваться, а у тех, кто не будет, сформировалось бы как можно более правильное представление о предмете.

Равновесие по Нэшу

Бесконечные антагонистические игры Бескоалиционные игры Равновесие по Нэшу Примеры

Позиционные игры

Рафинирование равновесий по Нэшу

Позиционные игры

Полное знание

Общая информация

Арбитражные схемы и кооперативная теория игр

Арбитражные схемы:

  • решение Нэша

  • решение Калаи-Смородинского

Кооперативная теория игр

  • история возникновения

  • основные понятия

  • примеры кооперативных игр

С-ядро и значение Шепли

С-ядро:

  • определение

  • критерии непустоты

  • С-ядро для выпуклых игр

Значение Шепли:

  • определение и аксиоматизации

  • понятие монотонности, теорема Янга